Step of Proof: connex_functionality_wrt_iff
12,41
postcript
pdf
Inference at
*
1
1
0
I
of proof for Lemma
connex
functionality
wrt
iff
:
1.
T
: Type
2.
R
:
T
T
3.
R'
:
T
T
4.
x
,
y
:
T
.
R
(
x
,
y
)
R'
(
x
,
y
)
(
x
,
y
:
T
.
R'
(
x
,
y
)
R'
(
y
,
x
))
(
x
,
y
:
T
.
R'
(
x
,
y
)
R'
(
y
,
x
))
latex
by PERMUTE{1:n, 2:n, 3:n, 4:n, 5:n, 1:n, 2:n, 3:n, 4:n, 5:n}
latex
1
: .....wf..... NILNIL
1:
5.
x
,
y
:
T
.
R'
(
x
,
y
)
R'
(
y
,
x
)
1:
6.
x
:
T
1:
7.
T
1:
x
T
2
: .....wf..... NILNIL
2:
5.
x
,
y
:
T
.
R'
(
x
,
y
)
R'
(
y
,
x
)
2:
6.
T
2:
7.
y
:
T
2:
y
T
3
: .....wf..... NILNIL
3:
5.
x
,
y
:
T
.
R'
(
x
,
y
)
R'
(
y
,
x
)
3:
6.
T
3:
T
Type
4
: .....wf..... NILNIL
4:
5.
x
,
y
:
T
.
R'
(
x
,
y
)
R'
(
y
,
x
)
4:
T
Type
5
: .....wf..... NILNIL
5:
(
x
,
y
:
T
.
R'
(
x
,
y
)
R'
(
y
,
x
))
.
Definitions
f
(
a
)
,
t
T
,
s
=
t
,
x
:
A
B
(
x
)
,
P
Q
,
x
(
s1
,
s2
)
,
,
x
:
A
B
(
x
)
,
Type
,
P
Q
,
P
Q
,
P
&
Q
,
P
Q
,
x
:
A
.
B
(
x
)
origin